If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2-23c=0
a = 1; b = -23; c = 0;
Δ = b2-4ac
Δ = -232-4·1·0
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-23}{2*1}=\frac{0}{2} =0 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+23}{2*1}=\frac{46}{2} =23 $
| 7+3k=4k | | 3x+5x-6=2(4x-3) | | Y-5=1/3(x+6) | | 3(2z-1)4(z+3)=5(2z-1)+4(3z-1) | | -28=2(u-7)-4u | | -25=2c–9 | | 4x+2-x=3(x2/3) | | 6x+100=7x | | -9+4x=-x+41 | | 9x=x+7 | | 5x-2(x-4)=10 | | 5q−2q=18 | | 8x-7=x+8 | | -13=-4x+3 | | 4n+1=-11+6n-5n | | |x-3|-3=12 | | X+81x+121=180 | | 1/2x-1/2=-5 | | 5(1+3)-9=4(3x-3) | | -6+5=r | | 5x+10=12x-11 | | 230-y=280 | | X+121x+8=180 | | 50=5(f−83) | | 230-y=28 | | f=4=6f+26 | | 5(f−83)=50 | | 18v-23v=3D+5 | | 8x-3=5(2x+1 | | 96=8(u+3) | | X+121=x+81 | | 3n=8(9n+8) |